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Abstract

We find conditions under which a scheme organizer is able to design a pyra-

mid scam to exploit partially sophisticated agents. Further, we characterize the

pyramid scams in which such agents would be willing to participate. Motivated

by the growing discussion on the legitimacy of multilevel marketing schemes and

their resemblance to pyramid scams, we highlight the key differences between the

two types of schemes and characterize the optimal multilevel marketing scheme

when agents are fully rational.
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1 Introduction

In various instances when individuals fail to act in their best interest, they become

vulnerable to manipulation and exploitation by others. Although policy makers and

consumer protection agencies may try to protect individuals from engaging in contracts

and transactions whose main purpose is to take advantage of such failures, it is not

always easy to draw the boundary between legitimate and exploitative transactions and

contracts. Are there any observable characteristics that would enable us to distinguish

between the two types of contracts? Can we identify conditions under which individuals

are more vulnerable to exploitation? How can regulators protect individuals while still

allowing for legitimate business endeavors to thrive?

We address these and other questions in the context of the growing discussion1

on the legitimacy of multilevel marketing companies (MLMs), and the problem of

distinguishing between legitimate MLMs and pyramid scams.2 A legitimate MLM is a

company that uses independent representatives to sell genuine products or services to

friends and acquaintances. These representatives earn commissions not only from the

retail sales they make, but also from recruiting new representatives into their down-

line as well as from the sales these new representatives make. According to the Direct

Sellers Association, an MLM lobbying group, American MLMs made over 36 billion

dollars in retail sales in 2015, and over 20 million Americans were involved in multilevel

marketing in the past decade.3

In a pyramid scam, there is no genuine product and “representatives” are typically

compensated for recruiting new members into their down-line. Pyramid scams are il-

legal in virtually every country and this provides their organizers with an incentive to

disguise themselves as legitimate MLMs by promoting useless products (Federal Trade

Commission, 2016). They are capable of doing so since, typically, legitimate MLMs

sell products whose quality is hard to assess and verify, such as vitamins and nutri-

tional supplements (Direct Selling Association, 2016; Schuette, n.d.). The difficulty

in assessing the quality of such products is inherent in multilevel marketing since it is

what makes a recommendation from a trusted acquaintance valuable and makes word-

1See, e.g., Bort (2016), Hoyle (2016), McCrum (2014), McKown (2017), McCarthy (2016), Nocera
(2015), “Multi-level marketing in America” (2015), Parloff (2016), and Wieczner (2017).

2The Federal Trade Commission’s website suggests that “there are multi-level marketing plans
—and then there are pyramid schemes. Before signing on the dotted line, study the company’s track
record, ask lots of questions, and seek out independent opinions about the business” (Federal Trade
Commission, 2016a).

3See Direct Selling Association (2016). Since MLMs are privately owned and sell different products,
most of the available data is from lobby groups.

2



of-mouth marketing a viable tool to start with. The downside is that the difficulty

in verifying the value of the merchandise is what makes it possible for pyramid sellers

to disguise themselves as legitimate MLMs and makes it hard for consumer protection

authorities and potential representatives to distinguish between these businesses (see

Federal Trade Commission, 2016; Schuette, n.d.).

Our main objective is to identify both the differences between legitimate MLMs

and pyramid scams, and the conditions that allow such scams to work. To this end,

we develop a model of word-of-mouth marketing in which a scheme organizer (SO)

distributes a good to a directed network of fully rational agents that is formed randomly

and sequentially. These agents can purchase a distribution license from the SO or from

other distributors and become distributors themselves. A distributor j is said to belong

to another distributor i’s down-line if he purchased a license from i or from another

member of i’s down-line. The distributors are compensated according to a reward

scheme that maps their down-line and the retail sales made by members of their down-

line to a monetary reward. The SO chooses the reward scheme while taking the agents’

equilibrium behavior in its induced game into account.

The distributors are intermediaries in this setting. What makes intermediation

valuable to the SO? In our model, agents must become aware of the existence of the

good in order to purchase it. They learn of its existence from their network neighbors.

With no financial incentives, these neighbors spread the information with some prob-

ability p < 1. The reward scheme provides distributors with financial incentives to tell

their neighbors about the good such that the information about its existence (and the

possibility of purchasing a distribution license) spreads to a larger number of agents.

In the real world, we find evidence of both legitimate multilevel marketing schemes

and pyramid scams, the latter of which are prevalent despite being illegal.4 While

legitimate multilevel marketing schemes are used in order to distribute genuine goods,

the main “product” being traded in a pyramid scam is the right to join the pyramid.

Since fully rational economic agents will never take part in a pyramid scam, it is

necessary to change our behavioral model in order to understand such scams and the

extent to which they are different from legitimate multilevel marketing schemes.

In the contexts of speculation in financial markets and bubbles, which are closely

related to pyramid scams, the literature offers two main approaches that depart from

the rational expectations model: assuming that agents use simplified representations of

other agents’ strategies/information (Jehiel, 2005; Eyster and Rabin, 2005; Jehiel and

4For two examples of recent pyramid scams that lured a combined total of 406,000 “consumers”
see Federal Trade Commission (2012, 2014).
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Koessler, 2008; Eyster and Rabin, 2010; Bianchi and Jehiel, 2010; Eyster and Piccione,

2013; Steiner and Stewart, 2015) and relaxing the common prior assumption (Harisson

and Kreps, 1978; Morris, 1996). We follow the former approach and use analogy-based

expectations equilibrium (Jehiel, 2005) as a solution concept.5

We now illustrate the behavioral assumption underlying this solution concept in the

context of our model. Consider a reward scheme and assume that it is commonly known

that the willingness to pay for the good is 0 (i.e., the only “product” being traded is

the right to sell distribution licenses). Agents receive offers to join the pyramid (i.e., to

purchase a license) at different times. Roughly speaking, joining the pyramid may be

more attractive to those agents who have an opportunity to join earlier since the number

of pyramid members who compete for recruiting new entrants is smaller. Our agents

understand this logic and have accurate beliefs regarding the process that generates the

network. Using a simplified model of their opponents’ strategies, they correctly grasp

their opponents’ average behavior but they fail to perceive the connection between this

behavior and the time when their opponents make their decision to join the pyramid.

Our agents can be viewed as if they were best responding to statistically correct feedback

about other agents’ behavior in similar schemes (e.g., the probability that an agent

who is offered an opportunity to purchase a distribution license will purchase it) that

is supplied by the SO.

We show that if the tendency of agents to mention the good to their network

neighbors in the absence of financial incentives p is small, and the number of agents is

sufficiently large, then the SO can construct a reward scheme that extracts gains from

the agents even when there is no demand for the good. That is, a pyramid scam is

sustainable in such a case. What type of reward schemes can systematically fool our

partially sophisticated agents into taking part in such a pyramid scam? It turns out

that there is a surprisingly simple property that characterizes these reward schemes:

they must offer compensation that is based on at least two layers of an agent’s down-

line. We show that two layers of compensation are sufficient to construct a pyramid

scam, whereas a scheme that pays commissions based on one layer of agents’ down-lines

cannot generate a strictly positive expected profit for the SO. This result suggests a

rationale for why MLMs often offer recruitment-based compensation that is dependent

on multiple levels of distributors’ down-lines.

It is of interest to understand what individuals are especially vulnerable to pyramid

scams and what their degree of sophistication is. To this end, we develop a cognitive

hierarchy model in the spirit of Camerer, Ho, and Chong (2004). In our cognitive

5In Section 5, we analyze our model using the alternative approach offered by the literature.
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hierarchy model, naivety (i.e., level 0’s behavior) takes the form of best responding

to one’s opponents’ average behavior. Observe that level 0’s behavior corresponds to

our notion of partial sophistication. This implies that, unlike in conventional level-

k thinking models in which the naive type’s behavior is exogenously given, here the

naive type’s behavior is determined in equilibrium. We show that, for every k > 0,

an SO who faces a large population of agents whose level of sophistication is k and

above can sustain a pyramid scam regardless of p. That is, agents whose degree of

sophistication is greater than 0 may fall victim to a pyramid scam even in instances in

which a population of level-0 agents would never participate in such a scam.

To understand the difference between pyramid scams and legitimate multilevel mar-

keting, we solve for the profit-maximizing reward scheme when agents are fully rational

and the SO produces a genuine product (i.e., the agents’ willingness to pay for the good

is strictly greater than 0). First, this scheme does not include entry fees. Second, it

does not compensate distributors for recruiting new distributors into their down-line.

Third, it pays commissions for multiple layers of retail sales (that is, for both direct

and indirect retail sales). In other words, in the optimal scheme only retail sales are

rewarded. Therefore, preventing MLMs from offering recruitment-based commissions

and charging entry fees would have no effect on their profits.

Entry fees and recruitment-based compensation are crucial for real-world pyramid

scams as there is no real product that can generate income for the SO.6 At a glance,

it seems that it is possible to prevent MLMs from offering recruitment-based pay or

from charging entry fees. However, such a policy is hard to enforce: fees are sometimes

disguised as costs of acquiring initial stock or training,7 and the rewards are endogenous

such that ex ante it is unclear what portion of them is related to sales and what portion

is related to recruitment. In this paper, we attempt to obtain a better understanding of

the mechanisms and incentives that underlie pyramid scams and multilevel marketing

schemes in order to suggest a more transparent way of drawing the boundary between

the two phenomena.

The paper proceeds as follows. We present the model in Section 2 and analyze

legitimate multilevel marketing schemes in Section 3. Our main results are given

in Section 4, which focuses on pyramid scams. In Section 5 we discuss alternative

6In some countries, consumer protection authorities define a pyramid scam as an MLM that pays
“compensation for recruitment or requires purchases as a condition of participation”(Competition
Bureau, 2015).

7“Pyramid companies make virtually all their profits from signing up new recruits and often at-
tempt to disguise entry fees as the price charged for mandatory purchases of training, computer
services, or product inventory” (Schuette, n.d.).
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modeling approaches. Section 6 covers the related literature and Section 7 concludes.

2 The Model

There is a scheme organizer (SO) who produces a good free of cost and with no capacity

constraints, and an infinite set of agents I. Each agent i ∈ I is characterized by

a unit demand and two numbers: his willingness to pay ωi ∈ {0, 1} and his decay

parameter ψi ∈ {0, 1}. For every agent i ∈ I, we assume that ωi and ψi are drawn

independently and denote p := Pr (ψi = 1) and q := Pr (ωi = 1), respectively. The

role and interpretation of the decay factor will be clarified soon.

Arrival process. Time t = 0, 1, 2, ... is discrete. Conditional upon the game

reaching period t, there is a probability δ < 1 that the game continues and a probability

1− δ that it terminates at t. The SO enters the game at time 0. At each time t > 0,

a new agent j ∈ I enters the game and meets one player i who is chosen uniformly

at random from the set of players who entered the game previously (including the

SO). For example, an agent j who enters the game at time t = 3 meets the SO with

probability 1
3
. Agent j meets the agent who entered at time 1 with probability 1

3
and

the agent who entered at time 2 with probability 1
3
. Let G denote the directed tree,

rooted at the SO, that is induced by the meeting process. Observe that G evolves over

time. An example of a snapshot of G at a specific point in time is given in Figure 1.

The length of the directed path (if any exists) from i to j is denoted by dG (i, j) and

the subtree of G rooted at i ∈ I is denoted by Gi.

SO 1 2 7 9

34 5

68

Figure 1: A snapshot of G at the end of period 9. The numbers represent the time at which each

agent entered the game.

Distribution. For t = 0, 1, ..., n, let At denote the set of distributors at time t.

Let A0 = {SO}. We shall now describe the process of becoming a distributor. Each

i ∈ I who enters the game at a time t ≥ 1 meets a player j and starts climbing the

meeting tree G from j toward the SO. Agent i stops when he encounters an agent

k 6∈ At−1 with ψk = 0 or a player k′ ∈ At−1 (observe that k′ may be the SO). In

the former case, At = At−1 and the game moves to the next period. In the latter, i
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interacts with k′ as follows. Player k′ can make agent i an offer to purchase a unit of

the good at a fixed price η (predetermined by the SO), which is paid to the SO. He

can also make agent i an offer to purchase a distribution license (k′ is allowed to make

both offers). Agent i may or may not agree to each of k′’s offers. If agent i receives an

offer to purchase a license and accepts it, then At = At−1 ∪ {i}. That is, i becomes a

distributor. Otherwise, At = At−1. If i does not become a distributor in round t, he

cannot become one later. That is, if i 6∈ At, then i 6∈ Aτ for all τ > t.

We can now interpret the decay parameters p and ψ. Agent i’s decay parameter

ψi can be viewed as i’s tendency to mention the product to people whom he meets

when he does not have any financial incentive to do so. When an agent i (with ψi = 1)

is not a distributor but has heard about the product from some other agent k, he

will mention the product to agents whom he meets and refer them to agent k. The

parameter p can be interpreted as a property of the good. When p is high, it means

that the good raises interest and people tend to mention it when they talk to their

friends and acquaintances.

SO

1 ∈ A5

ψ2 = 1

ψ3 = 0

ψ4 = 1

ψ5 = 1

Agent 6 meets Agent 6 interacts with

SO SO

1 1

2 1

3 -

4 -

5 SO

Figure 2: A snapshot of the distribution process at the end of t = 5. On the left, we have the

meeting tree G. The numbers represent the time at which each agent entered the game. Note that

the set of distributors is A5 = {SO, 1}. The possible scenarios for t = 6 are provided on the right.

Recall that these scenarios are equally likely.

The distribution tree. When a distributor j offers a license to agent i and the

latter accepts, a directed link j → i is formed and i becomes a member of j’s down-

line. We denote the number of units of the good sold by distributor j by wj. Let T

denote the directed weighted tree that reflects the sales in the SO’s down-line at the

end of the game: the skeleton of T is the SO’s down-line and the weight of each node

i ∈ T is the number of sales made by distributor i ∈ T , that is, wi. As before, we

denote the length of the directed path from i to j in T by dT (i, j) if such a path exists.

For each i ∈ I, we denote the subtree of T rooted at i ∈ I by Ti.

Payoffs. An agent who purchases a distribution license and becomes a distributor
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incurs a cost of c > 0 that reflects the effort of learning how to sell the good/licenses.

Distributors receive commissions according to a reward scheme R chosen by the SO

in advance. The reward scheme maps each distributor’s down-line to a real reward.

Formally, a reward scheme R sets a price ηR for the good8 and pays each distributor i∑
j∈Ti/{i}

aR (dT (i, j)) +
∑
j∈Ti

bR (dT (i, j) + 1)wj − φR (1)

where φR ≥ 0 is an entry fee paid to the SO, aR (1) , aR (2) , ... ≥ 0 are recruitment

commissions, and bR (1) , bR (2) , ... ≥ 0 are retail sales commissions. Observe that this

is with loss of generality. In Section 5, we discuss an extension of the model in which a

reward scheme can be any function that maps directed weighted trees to real (possibly

negative) rewards. An agent who purchases a unit of the good pays ηR to the SO and

enjoys an additional payoff of ωi.

SO

w2 = 1

w3 = 0

w9 = 1

w7 = 0 w4 = 3

w6 = 2

Distributor Reward

2 bR (1) + bR (3) + aR (1) + aR (2)− φR
3 aR (1) + bR (2)− φR
4 3bR (1) + 2bR (2) + aR (1)− φR
6 2bR (1)− φR
7 −φR
9 bR (1)− φR

Figure 3: An example of a distribution tree at the end of a game and its induced rewards. Observe

that agents 1, 5, and 8 are not distributors and therefore do not appear in the distribution tree T .

We restrict our attention to reward schemes in which aR (τ) ≤ φR and bR (τ) ≤ ηR

for every τ ∈ N, and refer to such schemes as incentive-compatible schemes. This

restriction is motivated by the idea that the distributors have to report to the SO

about the sales and recruitments they make. Schemes that are not incentive compatible

provide each distributor with an incentive to misreport to the SO that he sold additional

distribution licenses (or units of the good). By misreporting, each distributor can

benefit at the expense of the SO. For example, consider a reward scheme R such that

aR (1) > φR. By misreporting that he sold a distribution license to some fake identity j,

distributor i has to pay j’s license fee φR in order to obtain a commission of aR (1) > φR.

8Allowing for an endogenous price would have no effect on our results.
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Comment: Purchases for own use

In our model, agents have one opportunity to purchase the good. An agent who

rejects an offer to purchase the good cannot purchase it at a later stage, even if he

becomes a distributor himself. It would be more realistic to assume that agents who

become distributors can purchase the good for their own use at a price of ηR − bR (1)

(i.e., to “sell” the good to themselves and obtain the commission for that sale). We

have chosen to preclude this option since doing so greatly simplifies the exposition

and allows us to deliver the intuition for some of the proofs in a clearer way. Our

modeling choice has no effect on any of our results (proofs of our results without this

simplification are available upon request).

The game. The timeline in our model is as follows. First, the SO chooses a

reward scheme R. Then, the agents and the SO play the distribution game Γ (R) that

is induced by the scheme. We assume that each agent knows at what time t he enters

the game and the rules of the game. To solve Γ (R), we use subgame perfect Nash

equilibrium (SPE).

We now state two observations on the SPEs of Γ (R). The first observation follows

from the fact that our setting is not stationary: as time passes, the number of agents

whom a new entrant is expected to meet goes to 0.

Observation 1 There exists a time t? (R) such that at each time t > t? (R), every

agent who receives an offer to purchase a distribution license rejects it.

Proof. Consider an agent j who enters the game at time t. His expected number

of descendants (in G) is smaller than
∑∞

i=1
δ
t+1

. As this expression goes to 0 when t

tends to infinity, j’s expected number of descendants (in G) goes to 0 as well. Incentive

compatibility implies that R (Tj) ≤ (φR + ηR) (|Gj| − 1). Since c > 0, there is a round

t? from which time onwards agents never purchase a license.

When an agent is indifferent between accepting and rejecting (respectively, making

and not making) an offer to purchase the good or a license, then we break this indif-

ference and assume that he accepts it. This implies both unique and symmetric SPE

behavior by the agents (the agents’ decisions are independent of their labels and the

labels of agents with whom they interact). We denote the SO’s expected profit in the

SPE of Γ (R) by π (R).

Observation 2 If q > 0 and ηR < 1, then there exists a scheme R′, identical to R

except that ηR′ ∈ (ηR, 1], such that π (R′) > π (R).
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Proof. Consider the SPE that was played in Γ (R) and fix the agents’ strategies. We

show that these strategies are a part of an SPE of Γ (R′). Under both schemes, for

every i ∈ I, selling the good is always a best response and buying it is a best response

if and only if ωi = 1. Consider an agent i ∈ I who decides whether or not to purchase

(respectively, sell) a license at time t of Γ (R′). Since the commissions in both schemes

are identical and we fixed the other agents’ profile of strategies, it is a best response

for i to purchase (respectively, sell) a license if and only if it is a best response to do so

at time t of Γ (R). Hence, the profile of strategies that forms the SPE that was played

in Γ (R) also forms an SPE of Γ (R′). It follows that by perusing the same strategy in

both games the SO can make the same transfers to the distributors, receive the same

amount of license fees, and sell the same amount of the good. Since ηR′ > ηR, the

revenue obtained by the SO in Γ (R′) is strictly greater than the revenue obtained by

the SO in Γ (R). Hence, π (R′) > π (R).

In light of Observation 2, we shall restrict attention to schemes R such that ηR = 1

and omit ηR from the description of the scheme.

3 Benchmark: Fully Rational Agents

3.1 The case of q = 0

We formally show that when q = 0 (i.e., there is no demand for the good), the SO

cannot make a strictly positive expected profit. In this case, each reward scheme

induces a bet between the SO and the participants on the number of agents who will

purchase a license. The no-trade theorems (Milgrom and Stokey, 1982; Tirole, 1982)

imply that if agents are willing to purchase licenses, then the SO’s profit is non-positive.

Proposition 1 Let q = 0. There exists no reward scheme R such that π (R) > 0.

Proof. Consider a reward scheme R. Since q = 0, the game Γ (R) induces transfers

between the SO and agents who purchase a distribution license. Each of the latter

agents must have an expected payoff of at least 0 in every SPE of Γ (R). Hence, if

agents purchase licenses in an SPE, then π (R) < 0.

If the SO can make a strictly positive expected profit when there is no genuine

product to be traded (i.e., q = 0), then we say that he can sustain a pyramid scam.

Proposition 1 confirms that the SO is unable to sustain such a scam when he faces

fully rational agents.
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3.2 The optimal scheme when q > 0

In this subsection, we relax the assumption that q = 0 and adopt the point of view

of a profit-maximizing SO. First, we examine whether the SO would benefit from

using a scheme that charges entry fees or offers recruitment-based pay. The next

proposition establishes that a profit-maximizing scheme need not offer recruitment-

based compensation or charge entry fees.

Proposition 2 There exists an incentive-compatible reward scheme R such that φR =

0, aR (τ) = 0 for every τ ∈ N, and π (R) ≥ π (R′) for every other reward scheme R′.

Proof. The first part of the proof considers an arbitrary scheme R′ and shows that

if φR′ > 0, then there exists another scheme R such that φR = 0 and π (R) ≥ π (R′).

Observe that R need not be incentive compatible. In the second part of the proof, we

shall construct an incentive-compatible scheme R? such that π (R?) ≥ π (R).

Consider Γ (R′), and, without loss of generality, assume that the agents are indiffer-

ent between purchasing a license and not doing so in at least one round which we shall

denote by t (if there were no such round, then either the SO would be able to increase

his profit by raising the entry fees, or no agent would purchase a license). Construct

another scheme R such that aR (τ) = γaR′ (τ) and bR (τ) = γbR′ (τ) for every τ ∈ N,

and φR = 0. We can set γ < 1 such that, in round t of Γ (R), the agents are exactly

indifferent between purchasing a license and not doing so, given the strategies that

were played in Γ (R′). In expectation, given these strategies, this scaling down weakly

reduces the net transfers (the commissions minus the entry fees) from the SO to agents

whose expected payoff is positive in the SPE of Γ (R′), while keeping the expected

payoff non-negative. Since the only change made in the transition from R′ to R is a

scaling down of the commissions and the fees, this profile of strategies is part of the

SPE of Γ (R). This completes the first part of the proof.

Consider an arbitrary reward scheme R such that φR = 0. By Observation 1, in

Γ (R), there is a last round in which agents purchase a license, which we shall denote

by t?. Let R? be such that for every directed weighted tree Ti,

R? (Ti) =
∑
j∈Ti

pdT (i,j)bR (1)wj (2)

Under R?, each distributor is indifferent between selling a license to agents whom he

meets and not doing so. This is because, for each agent i ∈ I, independently of the

number of distributors in his down-line, the expected revenue from selling (possibly
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indirectly) a unit of the good to an agent j ∈ Gi such that dG (i, j) = x is px−1bR (1).

Since bR (1) = bR? (1), each agent who purchases a license in round τ of Γ (R?) receives,

in expectation, the same transfers as he would receive in Γ (R) following the strategy

of offering a unit of the good to each agent whom he meets and not selling licenses

at all. Thus, the expected transfer to an agent who purchases a license in round τ is

weakly greater under R. We now use this fact to show that R? mimics the solution to

an auxiliary problem that guarantees the SO an expected profit greater than π (R).

Consider an auxiliary problem in which the SO chooses a subset of rounds S ⊆
{1, ..., t?} such that in each round t ∈ S, a distributor who meets an agent must make

the latter an offer to purchase a license and the latter must accept the offer. In each

round t 6∈ S, a distributor who meets an agent is not allowed to make him an offer to

purchase a license. Distributors are paid according to R? in the auxiliary problem and

each agent i purchases the good if and only if ωi = 1. Since the SO can decide when

agents will purchase licenses and because his expected transfers are weakly lower than

his expected transfers under R, his payoff in the auxiliary problem is at least π (R).

Under R?, the expected net profit (the revenue minus commissions paid to distrib-

utors) of the SO from the potential sale to agent j such that dG (SO, j) = x ≥ 2 and

there are y ∈ {0, 1, ..., x− 2} distributors on the directed path from him to j is

qpx−1−y[1−
y∑
t=1

py−tbR? (1)] (3)

Adding a distributor to the directed path would raise the SO’s net profit if and only

if bR (1) ≤ 1 − p. Hence, the solution to the auxiliary problem is S = {1, ..., t?} if

bR (1) ≤ 1 − p and S = ∅ if bR (1) > 1 − p. In the former case, the SPE of R?

imitates the solution as it is a best response to purchase (and sell) a license in every

round t ≤ t?. In the latter case, any reward scheme that incentivizes the agents not to

purchase licenses imitates the solution to the auxiliary problem.

At the heart of this proof is a scaling-down argument. A profit-maximizing SO is

always better off if he can scale down the (strictly positive) net transfers he makes to

the distributors without affecting their behavior. When a scheme charges entry fees,

it is always possible for him to do so.

The incentive-compatible scheme we constructed in the proof is geometric (Emek

et al., 2011). A scheme R is said to be geometric if there is an s ≤ 1 such that for

every τ ∈ N, bR(τ+1)
bR(τ)

= s. The optimality of the geometric scheme R? follows from

the fact that each distributor is paid the exact amount that he can secure by making

only direct retail sales (without selling licenses) given bR? (1). Observe that this is the
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minimal compensation that is required to incentivize a distributor to recruit a new

distributor and lose access to the latter’s descendants in G.

We say that two schemes, R and R′, are equivalent if π (R) = π (R′) and for every

round τ , an agent who enters Γ (R) at time τ makes the same expected payoff as an

agent who enters Γ (R′) at time τ . The next proposition establishes that every optimal

scheme is equivalent to some geometric scheme.

Proposition 3 Suppose that R is an incentive-compatible scheme that maximizes the

SO’s expected profit. There exists an incentive-compatible geometric reward scheme

that is equivalent to R, does not charge entry fees, and does not pay recruitment-based

compensation.

Proof. There are two cases: either φR > 0, or φR = 0. First, suppose that φR = 0.

Since R is optimal, it must mimic the solution to the auxiliary problem presented in

the proof of Proposition 2. Hence, either R is degenerate (i.e., agents do not purchase

a license on the equilibrium path of its induced game) or agents purchase a license in

rounds 1, ..., t? of Γ (R) and each of them is paid the minimal amount possible given

bR (1). In the latter case, R is equivalent to the geometric scheme given in (2). In the

former case, it is equivalent to a geometric scheme that pays bR? = 0.

To complete the proof, suppose that φR > 0 and consider the equilibrium path of

Γ (R). There are two cases: agents purchase a license in exactly one round t, or they

purchase a license in at least two rounds. In the former case, it is easy to construct a

geometric scheme that makes agents indifferent between purchasing a license in round

t and not doing so. Recall that the SO may refrain from making offers in every round

t′ < t. Hence, either such a geometric scheme outperforms R, or it guarantees the same

expected transfers to a distributor who purchases a license in round t.

Let us show that R cannot maximize the SO’s expected profit if there are two

rounds in which agents purchase a license on the equilibrium path of Γ (R). Recall the

scaling-down argument from step 1 of the proof of Proposition 2. The SO is strictly

better off when he scales down the commissions and the entry fees if there exists one

agent who makes a strictly positive expected payoff. By our assumption, under R,

agents purchase a license on the equilibrium path in two rounds, t1 and t2, where t2

denotes the last round in which they purchase a license. If an agent who purchases a

license in t2 makes an expected profit of 0 from selling the good (recall that he does not

sell licenses on the equilibrium path), then an agent who purchases a license in round

t1 can secure a strictly positive payoff by following the strategy of selling the good to

each agent whom he meets and not selling licenses at all.
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Proposition 3 is useful since it allows us to restrict attention to geometric reward

schemes. We now study the income distribution that is induced by the optimal geo-

metric reward scheme.

The income distribution

Denote by zt the expected number of agents whom an agent who purchases a license in

round t meets if he does not sell any distribution license. Observe that the last agent

who purchases a license in the SPE of Γ (R?) (in round t?) makes an expected payoff

of 0 (otherwise, it would be possible to charge entry fees and increase the SO’s profit).

Thus, the expected payments from the SO to that distributor sum up to c = qbR? (1) zt? .

That is, bR? (1) = c
zt?q

. The distributor who purchases a license in round t < t? earns

an expected net payoff of c
(
zt
zt?
− 1
)

. Since

zt =

(
δ

t+ 1
+

δ2

t+ 2
+ ...

)
+

1

t+ 1

(
δ2p

t+ 2
+

δ3p

t+ 3
+ ...

)
+ ... (4)

is an infinitely countable sum of functions that are decreasing and convex in t, it fol-

lows that the expected net income is decreasing and convex with respect to the time

at which agents purchase a license and become distributors.

Multiple layers of intermediation

The SO has to choose how many distributors to use (i.e., he has to choose t?, which

in turn pins down bR? (1)). The marginal benefit of using the k-th distributor (i.e.,

the addition to the SO’s revenue when he extends S from {1, ..., k − 1} to {1, ..., k})
is (1− p) zk. Observe that zk is increasing in δ and, since the harmonic sum diverges,

tends to infinity at the δ = 1 limit. The marginal cost of using the second distributor

is cz1
z2

. For large values of δ, z1
z2
≤ 2. Therefore, there exists a number δ? such that

for every δ > δ?, in a game that is induced by an incentive-compatible reward scheme

that maximizes the SO’s profit, agents purchase a license in rounds t = 1 and t = 2

(at least). The next proposition complements Proposition 2 by showing that if δ > δ?,

then incentive-compatible schemes that charge entry fees or pay recruitment-based

compensation do not maximize the SO’s profit.

Proposition 4 Let p < 1, δ > δ?, and consider an incentive-compatible scheme R. If

R maximizes the SO’s expected profit, then φR = 0 and aR (1) = aR (2) = ... = 0.
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Proof. We shall prove this claim by showing that an incentive-compatible scheme R′

such that φR′ > 0 or aR′ (τ) > 0 for some τ ∈ N cannot maximize the SO’s expected

profit. Let R′ be an incentive-compatible reward scheme such that aR′ (τ) > 0 for some

τ ∈ N. By incentive compatibility, φR′ > 0. Since δ > δ?, the optimality of R′ requires

that on the equilibrium path of Γ (R′) agents purchase a license in a set of rounds

{1, ..., k}, where k ≥ 2. In an SPE, an agent who purchases a license in round k makes

an expected payoff of at least 0 and agents who purchase a license in round t < k make

a strictly positive expected payoff since zt > zk. Recall the scaling-down argument

from step 1 of the proof of Proposition 2. If some agents make a strictly positive

expected payoff, then the SO can strictly increase his expected profit by scaling down

the commissions and the entry fees (setting φ = 0 and multiplying the commissions

by a constant such that in round k agents are indifferent between purchasing a license

and not doing so).

Observe that the scaled-down scheme we constructed in the proof need not be

incentive compatible. However, by Proposition 2, there exists an incentive-compatible

geometric scheme that guarantees the SO an expected profit at least as great as the

expected profit induced by the scaled-down scheme.

Propositions 2 and 4 establish that, in our model, for large values of δ, in an optimal

scheme, only retail sales (direct and indirect ones) are compensated when q > 0. In

other words, an incentive-compatible scheme that charges entry fees or pays recruitment

commissions cannot be optimal when q > 0. In the next section, we shall depart from

full rationality and show that entry fees and recruitment-based pay play a crucial role

when agents are partially sophisticated.

4 Partially Sophisticated Agents and Pyramid Scams

Our objective in this section is to understand the mechanisms that underlie pyramid

scams and the conditions that enable such scams to operate. In a real-world pyramid

scam, the only “product” that is being traded is the right to join the pyramid. To

reflect that, we shall assume through most of the analysis in this section that q = 0

(i.e., there is no demand for the good). In Proposition 1, we established that when the

agents are fully rational and q = 0, the SO cannot make a strictly positive expected

profit. A possible interpretation of that result is that fully rational agents cannot be

lured into taking part in a pyramid scam. However, in settings such as ours, where

agents have to consider and forecast multiple variables in order to reach a sensible

decision, the full rationality assumption might be too extreme. In this section we
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depart from the classic rational expectations model.

In the context of our model, the literature offers two potential trajectories to de-

part from full rationality: coarsening the agents’ strategic reasoning and relaxing the

common prior assumption. In our setting, agents have to forecast multiple decisions

taken by their successors. These decisions depend, among other factors, on the sub-

tleties of the reward scheme and on the way other agents grasp those subtleties. In

such complicated problems, it makes sense to use simplified models of other players’

behavior and information. Ideas in this spirit have been formalized by Jehiel (2005),

Eyster and Rabin (2005), and Jehiel and Koessler (2008). We follow this approach and

use analogy-based expectations equilibrium (Jehiel, 2005) to solve our model as it is

tailored to sequential-move games such as ours. In Section 5, we discuss the alterna-

tive approach (i.e., relaxing the common prior assumption) and its implications for our

results.

One interpretation of analogy-based expectations in our model is that in order to

simplify their decision problems, the players create simplified representations of their

opponents’ behavior and reason entirely in terms of these representations. Alterna-

tively, the formation of analogy-based expectations can be interpreted as learning from

coarse feedback about past play (in similar schemes). We shall elaborate on the latter

interpretation after we formally present the solution concept.

4.1 Coarse reasoning

In this subsection we apply analogy-based expectations equilibrium (ABEE) to our

model. There are four types of decisions in Γ (R): purchasing a license, selling a

license, purchasing a unit of the good, and selling a unit of the good. Observe that

there are more decision nodes in which an agent makes the second (fourth) type of

decision than there are decision nodes in which an agent makes the first (third) type

of decision.

Formally, denote by M1 the set of histories after which players decide whether to

purchase a distribution license or not, by M2 the set of histories after which players

decide whether to buy a unit of the good or not, by M3 the set of histories after which

players decide whether to offer a distribution license or not, and by M4 the set of

histories after which players decide whether to offer a unit of the good or not. We refer

to M1,M2,M3, and M4 as the players’ analogy classes.

For each agent i ∈ I, we denote i’s strategy by σi, and his (possibly mixed) action

in each node m ∈M1 ∪M2 ∪M3 ∪M4 by σi (m) ∈ [0, 1]. The decision to accept/make
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(respectively, reject/not make) an offer to purchase a license or the good in node m is

associated with σi (m) = 1 (respectively, σi (m) = 0). Denote by σSO the SO’s strategy,

let σ := (σi)i∈I∪{SO}, and denote the probability of reaching node m given σ by rσ (m).

Observe that the SO’s strategy affects9 rσ (m). For each node m ∈M1∪M2∪M3∪M4,

denote by σ (m) the expectation over the agents’ actions in m that is induced by the

profile σ.

For each k ∈ {1, 2, 3, 4} and i ∈ I, let βi (Mk) denote agent i’s analogy-based

expectations over his opponents’ behavior in Mk. Let βi := (βi (Mk))k∈{1,2,3,4} and

β := (βi)i∈I .

Definition 1 Player i’s analogy-based expectations βi are said to be consistent with σ

if for every k ∈ {1, 2, 3, 4}, βi (Mk) =
∑
m∈Mk

rσ(m)σ(m)∑
m∈M rσ(m)

whenever rσ (m) > 0 for some

m ∈Mk.

In words, the consistency of the players’ analogy-based expectations implies that

these expectations match the average behavior in the different analogy classes under σ.

Note that consistency implies that the agents assign lower weights to histories that

are less likely to be reached. To illustrate this, let δ = 0.5, p = 0, and consider a profile

σ in which agents always purchase (respectively, never purchase) a distribution license

in round 1 (respectively, round t > 1). Further, suppose that distributors (and the SO)

who meet agents at time t ∈ {1, 2, 3} always make them an offer to purchase a license.

When a distributor (or the SO) meets an agent at t > 3, the former does not make

an offer to the latter. Under this profile, at time t ∈ {1, 2}, agents receive an offer to

purchase a license with probability 1. An agent who enters the game at time t = 3 will

receive such an offer with probability 2
3

since there is a probability of 1
3

that he will

meet the agent who entered the game at round 2 who is not a distributor. Recall that

time t is reached with probability δt. Consistency implies that βi (M1) = δ
δ+δ2+ 2

3
δ3

= 3
5
.

Observe that β depends on the SO’s behavior. When the SO makes offers in rounds 2

and 3, more agents are likely to receive offers and reject those offers.

Definition 2 The strategy σi is a best response to βi if it best responds to the belief

that for each k ∈ {1, 2, 3, 4} and every node m ∈ Mk, each agent j ∈ I/ {i} plays

σj (m) = βi (Mk).

Definition 3 The pair (σ, β) forms an ABEE if βi is consistent with σ, and σi is a

best response to βi for each i ∈ I.

9Whether the agents’ understanding of the SO’s strategy is coarse or not has no effect on the
analysis.
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Observe that, given a scheme R, there might be more than one ABEE in Γ (R).

Let us redefine π (R) to be the maximal expected profit that the SO can make in an

ABEE of Γ (R).

We can interpret agents who base their decisions on their analogy-based expecta-

tions as agents who learn from coarse feedback on past play in similar schemes. For

instance, they might receive data about the proportion of offers to purchase a license

that was accepted in these schemes (the SO might provide them with this information

himself). The information received by our agents does not allow them to perceive sub-

tleties in the data such as the connection between purchasing decisions and time. In

fact, they might not even be aware of these complex statistical relations. Our agents

best respond to the coarse data that they do receive. The consistency requirement

implies that the feedback that the agents do obtain is correct on average. This may

reinforce their belief in the simplified model that they have in mind.

4.2 The case of q = 0

Our objective in this subsection is to understand the properties of the reward schemes

that underlie pyramid scams and the conditions that allow such scams to work. In

order to model the fact that in a real-world pyramid scam there is no genuine product

and therefore participants can trade only the right to join the pyramid, we assume

throughout this subsection that q = 0 (this implies that compensation that is based on

retail sales has no effect on the agents’ decisions). As in Section 3.1, if there exists a

reward scheme R such that π (R) > 0, then we say that the SO can sustain a pyramid

scam.

First, we investigate the relation between the number of layers on which the distrib-

utors’ compensation is based and the possibility that the SO makes a strictly positive

expected profit. We show that a reward scheme that underlies a pyramid scam must

offer compensation that is based on more than one level of the agents’ down-lines.

Definition 4 A reward scheme R is said to be a one-level scheme if aR (τ) = 0 and

bR (τ) = 0 for every τ > 1.

Proposition 5 Let q = 0. There exists no incentive-compatible one-level scheme R

such that π (R) > 0.

Proof. First, note that Observation 1 holds. Therefore, if agents purchase licenses in

an ABEE of Γ (R), then there exists a last round in which they do so. Second, if it is

a best response for an agent to purchase a license in round t, then it is a best response
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for him to do so in each round t′ < t. Let us assume by way of contradiction that there

exists in Γ (R) an ABEE in which agents purchase licenses and denote by k the last

round in which an agent purchases a license in this ABEE.

Denote by sk the expected number of offers (to purchase a license) made in this

ABEE in rounds 1, ..., k by the SO and the distributors. On average, sk agents hold

a distribution license after k rounds. In the rounds that follow round k, agents reject

every offer to purchase a license. Let v̂k denote the number of offers that the agent

who purchases a license in round k expects to make in those rounds (according to his

analogy-based expectations). Let vk denote the expected number of offers this agent

makes. Note that v̂k ≤ vk since the agents overestimate the probability that the offers

that they make will be accepted in rounds t > k (when an offer is rejected by agent

j, if p > 0, the agent who made the offer may meet the members of Gj and make

them some additional offers). Agents who purchased a license before round k make,

on average, at least vk offers after round k (agents who decided not to make offers in

previous rounds are expected to meet more new entrants in rounds t > k and therefore

are expected to make more offers). Since offers in rounds t > k are always rejected,

βi (M1) ≤ sk
sk + skvk

(5)

for each i ∈ I. The incentive compatibility of R implies that aR (1) ≤ φR. As a result,

the agent who enters the game in round k believes that he will receive commissions of

aR (1) βi (M1) v̂k ≤
aR (1) skv̂k
sk + skvk

≤ φRvk
1 + vk

< φR (6)

Hence, it is not a best response to purchase a license in round k. This stands in

contradiction to the assumption that agents purchase a license in round k in this

ABEE.

Since q = 0, a distribution license is essentially a bet on the number of agents

who will purchase a license in the future. Even though the agents’ analogy-based

expectations are typically overoptimistic, the SO cannot lure the agents into taking

such a bet by using incentive-compatible one-level schemes. That is, it takes more

than a simple scheme to take advantage of our agents’ coarse reasoning.

To obtain an intuition for this result, consider an agent i who receives an offer to

purchase a license in round k (which is the last round in which offers are accepted

in the assumed ABEE). Given an incentive-compatible one-level scheme, i will accept

the offer only if the number of licenses he expects to sell, v̂kβ (M1), is greater than 1.
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The key point is that every offer that contributes to v̂k is made after round k, and is,

therefore, rejected. This rejection leads to a reduction in β (M1), which is the ratio

between the number of accepted offers and the total number of offers made (we can

interpret this reduction as a negative “feedback” about the likelihood that other agents’

purchase a license when they have the opportunity to do so). Thus, even though v̂k

can be large, v̂kβ (M1) cannot exceed 1 and hence i prefers not to purchase a license

in round k.

Can the SO sustain a pyramid scam when he is allowed to use schemes that reward

multiple layers of “intermediation”? The answer to this question depends on p and the

expected number of entrants. In particular, if δ is sufficiently large and p is sufficiently

small, then a pyramid scam is sustainable.

Proposition 6 Fix q = 0. There exists a number δ? < 1 such that for every δ > δ?

there exists a number p? (δ) < 1 such that:

1. If p ≤ p? (δ), then there exists an incentive-compatible scheme R such that

π (R) > 0.

2. If p > p? (δ), then there exists no incentive-compatible scheme R such that

π (R) > 0.

Proof. First, we establish that in the extreme case of p = 1, there exists no scheme

R such that π (R) > 0. Assume to the contrary that there exists a scheme R such

that π (R) > 0. Then, there is an ABEE of Γ (R) in which there is a last round in

which agents accept offers to purchase a license; denote this round by k. By (6), the

analogy-based expectations of agents who purchase a license in round k are that they

will have less than one distributor in the first level of their down-line. According to

these expectations, their successors (i.e., agents who purchase a license after round k)

will have less than one distributor in the first level of their down-lines. Therefore, it

is a best response for each distributor to offer a license to every agent whom he meets

from round k onwards.

Let sk be the expected number of offers made in the first k rounds in the assumed

ABEE. The expected number of agents in the subtree Gi rooted at the agent i who

purchases a license in round k is denoted by Ek. Since p = 1 and from round k + 1

onwards agents reject every offer that they receive, the expected number of offers each

distributor makes from round k + 1 onwards is at least Ek. Hence, β (M1) ≤ 1
1+Ek

.

The expected number of distributors in the down-line of a distributor who purchases
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a license in round k cannot exceed

Ek
1 + Ek

< 1 (7)

By incentive compatibility, R (Ti) cannot exceed (|Ti| − 1)φR for every directed weighted

tree Ti. Therefore, the expected payoff received by the distributor who purchases a

license in round k is at most

EkφR
1 + Ek

− φR < 0 (8)

This stands in contradiction to the assumption that there exists an ABEE in Γ (R) in

which agents purchase a license in round k.

The next step of the proof is to analyze the other extreme case. That is, the

case that p = 0. We show that there exists a number δ? such that for δ > δ?, there

exists an incentive-compatible scheme R such that π (R) > 0. We shall prove this

by constructing a scheme such that in its induced game there exists an ABEE that

guarantees the SO a strictly positive expected profit. Consider a scheme R such that

for each directed weighted tree Ti,

R (Ti) = x (|Ti| − 1)− φR (9)

Let x ≤ φR. It follows that R is incentive compatible. Consider a profile of strategies

σ such that:

• An agent who receives an offer to purchase a license in round 1 accepts it.

• Agents reject offers in every round t > 1.

• The SO offers a distribution license only in round 1.

• Distributors offer distribution licenses in every round t > 1.

This profile guarantees the SO an expected profit of φR. We now show that if δ is

sufficiently large, then σ is an ABEE.

Consider a distributor i who meets a new entrant j. Given R, i’s objective is to

maximize the size of his down-line. Hence, distributor i will make an offer to agent j

to purchase a license regardless of the time at which they meet. Note that in every

round t > 1 the SO is indifferent between making an offer and not doing so. It is

left to show that purchasing a license is a best response in round 1 and is not a best
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response in every round t > 1. Since the expected payment to an agent who purchases

a license in round 1 is strictly greater than the expected payoff obtained by an agent

who purchases a license in round 2, it is sufficient to show that there exists x < φR

such that it is a best response for an agent to purchase a license in round 1.

Consider an agent j who purchases a license in round 1. Since he always makes

offers to other agents, if the game lasts up to period t = n, then, in expectation, he

makes
∑n

i=2
1
i

offers. Consistency implies that agent j believes that he will have, on

average,

δ
∑∞

i=1
δi

1+i

δ + δ
∑∞

i=1
δi

1+i

< 1 (10)

distributors in the first level of his down-line. Since the harmonic sum diverges, the

LHS of (10) tends to 1 at the δ = 1 limit. Consistency also implies that βj (M3) = 1.

Thus, according to his analogy-based expectations, j believes that he will have

Lk =

∑∞
j1=2

∑∞
j2=j1+1 ...

∑∞
jk=jk−1+1

δjk
j1j2...jk(

1 +
∑∞

i=1
δi

1+i

)k (11)

distributors in the k-th level of his down-line. As δ approaches 1, Lk tends to 1
k!

. Hence,

there exists a number δ? such that
∑∞

k=1 Lk > 1 for every δ > δ?. For every such δ,

it is possible to set x below φR in a way that would make the first entrant indifferent

between purchasing a license and not doing so and would make the second entrant

strictly prefer not to purchase a license to doing so. Observe that this result is true

for every c > 0 since we can always set x below φR and multiply both by a constant

γ > 1.

To complete the proof, fix δ ≥ δ?, p = p?, and suppose that there exists an incentive-

compatible scheme R such that π (R) > 0. We show that for every p < p?, there

exists an incentive-compatible scheme R′ such that π (R′) > 0. Denote by k the last

round of Γ (R) in which a license is purchased in an ABEE in which the SO’s profit

is strictly positive. Denote the agents’ analogy-based expectations in this ABEE by

β′1 = β (M1) and β′3 = β (M3). Consider a reward scheme R′ that pays φR (|Ti| − 1)−φR
for every tree Ti. Observe that R′ is incentive compatible. Fixing β (M1) = β′1 and

β (M3) = β′3, the k-th entrant’s (the agent who purchases a license in round k) analogy-

based expectations are that his expected payoff is at least as high as it is in the ABEE

of Γ (R) that we considered. Raising β (M3) above β′3 would only increase the k-
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th entrant’s payoff (given R′ and β (M1) = β′1) since it would increase the expected

number of agents in the k-th entrant’s down-line, which is his objective under R′.

Consider the game Γ (R′) and the following profile of strategies σ. The SO offers a

license in a subset of rounds K, where k ∈ K and k ≥ t for each t ∈ K. Distributors

always make offers to agents whom they meet. Agents accept offers to purchase a

license in rounds 1, ..., k and reject such offers from round k + 1 onwards. We shall

argue that σ and a consistent profile of analogy-based expectations β form an ABEE

in which the SO’s expected profit is strictly positive. This will allow us to focus on the

scheme R′ when we prove our claim.

First, let us consider the SO. Making an offer in the k-th round is clearly part of

a best response as the SO obtains entry fees and does not pay commissions to the

k-th entrant. Not making offers from round k+ 1 onwards is a best response since the

agents reject such offers. If the SO makes an offer only to the k-th entrant, then his

expected profit is strictly positive. Hence, the SO’s expected profit in this ABEE is

strictly positive.

The analogy-based expectations β (M3) = 1 are consistent with σ. Further, since

the distributors always make offers to agents whom they meet under σ, a consistent

β (M1) is independent of the expected number of offers that the SO makes in rounds

1, ..., k as this number cancels out in β (M1) (see, e.g., the RHS of (5)). Further,

β (M1) ≥ β′1 as the expected number of offers made after round k (per distributor)

under R′ is weakly greater than the respective number of offers per distributor under

R (since under R there might be distributors who did not make an offer to an agent

whom they met before round k and therefore after round k they are expected to meet

a larger number of agents, which raises the proportion of rejections and lowers β (M1)).

Since β (M3) ≥ β′3 and β (M1) ≥ β′1, it is a best response to purchase a license in every

round t ≤ k of Γ (R′). To make it a best response not to purchase a license from round

k + 1 onwards, we can multiply the commissions aR′ (1) , ..., aR′ (n) , ... by a constant

γ < 1 without changing the equilibrium behavior. Observe that offering a license is

always a best response given R′.

To conclude, if there exists a scheme R such that in its induced game there exists an

ABEE in which the SO’s expected profit is strictly positive, then in the game induced

by R′ there exists an ABEE in which β (M3) = 1 and the k-th entrant purchases a

license on the equilibrium path. We now focus on ABEEs of this kind, and show that

such an ABEE (with a corresponding incentive-compatible scheme R′) exists for every

p < p?. Our restriction to this type of ABEEs allows us to fix β (M3) = 1 and β (M1),

and focus on the k-th entrant’s payoff.

23



Denote the k-th agent to enter the game by i, and the expected number of agents

(conditional on reaching round k) in the j-th level of the tree Gi by lj. For example,

l1 =
∑∞

j=1
δj

k+j
and l2 =

∑∞
i′=1

∑∞
j′=i′+1

δj
′

i′j′
. Observe that β (M1) = 1

1+v(p)
, where

v (p) := v = l1 + pl2 + p2l3 + p3l4 + ... (12)

The expected number of distributors in i’s down-line according to his analogy-based

expectations is

l1
(1 + v)

+
l2 (1 + pv)

(1 + v)2 +
l3 (1 + pv)2

(1 + v)3 +
l4 (1 + pv)3

(1 + v)4 + ... (13)

As long as (13) is strictly greater than 1, we can set φR′ and aR′ (1) = aR′ (2) = ... ≤ φR′

such that σ and β form an ABEE as described above. If (13) is less than or equal to

1, we cannot do so (the fact that c > 0 is the reason for the strict inequality). In the

appendix, we show that the derivative of (13) with respect to p is strictly negative.

Hence, if for δ ≥ δ? and p = p? there exists a scheme R such that π (R) > 0, then for

δ and every p < p?, there exists a scheme R̂ such that π
(
R̂
)
> 0.

The fact that the SO is allowed to condition his pay on multiple layers of agents’

down-lines allows him to sustain a pyramid scam when δ is large and p is small. We shall

now provide some intuition regarding the roles that p, δ, and multilevel compensation

play in this result.

Let us consider the negative effect of p on the SO’s ability to sustain a pyramid

scam. In an ABEE, the agents accept (respectively, reject) offers to purchase a license in

every round t ≤ k (respectively, t > k). The higher p is, the more offers are made after

round k since the entrants in those rounds are more likely to run into distributors. This

reduces the proportion of accepted offers (i.e., the agents’ analogy-based expectations

β (M1)). Observe that a higher p may also increase the number of offers made before

round k and that such offers are accepted. However, this effect does not lead to an

increase in the agents’ analogy-based expectations. The reason for this is that every

offer that is accepted before round k results in an additional distributor who makes

additional offers after round k, and these additional offers are rejected and completely

cancel the positive effect that the accepted offer has on β (M1). In conclusion, p affects

the SO’s ability to sustain a pyramid scam through its negative effect on the agents’

analogy-based expectations that future entrants will purchase a license.

We can interpret p as people’s tendency to mention a good or a service to their

friends when they have no financial incentive to do so. Under this interpretation, it is
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natural to connect useless goods and services with low values of p that allow the SO

to sustain a pyramid scam.

The role multilevel compensation plays in this result is closely related to incentive

compatibility. Recall that incentive compatibility implies that the commissions cannot

exceed the entry fees. In a one-level scheme, this means that a necessary condition

for an agent to find it beneficial to purchase a license is that he expects to recruit

at least one other agent. Proposition 5 showed that, in any assumed ABEE, this

condition is not met by the last agent who is supposed to purchase a license. Incentive

compatibility imposes a more lenient constraint on reward schemes that offer multilevel

compensation. Given such a scheme, an agent may find it beneficial to purchase a

license only if he expects to have at least one more agent in his down-line.

How many layers of compensation are required to sustain a pyramid? It turns out

that if δ is sufficiently large and p is sufficiently small, then two layers of compensation

are sufficient to sustain a pyramid scam. The proof of the following result is similar to

that of Proposition 6, and therefore we omit it.

Proposition 7 Fix q = 0. There exists a number δ?? > δ? such that for every δ > δ??

there exists a number p?? (δ) < 1 such that if p ≤ p?? (δ), then there exists an incentive-

compatible scheme R such that π (R) > 0 and aR (τ) = 0 for every τ > 2.

How large is δ?? For p = 0, it is easy to answer this question by substituting values

into (10) and (11). It turns out that a value of δ = 31
32

, which reflects an average

population of 32 agents, is sufficient for a pyramid scam to be sustainable.

4.3 Sophistication and pyramids

In the previous section we found that it is possible to sustain a pyramid scam when

agents use simplified representations of other agents’ strategies. A natural question to

ask is whether agents with a higher degree of sophistication are more or less vulnerable

to pyramid scams.

To answer the above question, we develop a cognitive hierarchy model in the spirit

of Camerer, Ho, and Chong (2004), which is the standard framework for analyzing

strategic interaction among agents with different degrees of sophistication. The con-

ventional cognitive hierarchy model is built on a naive type (henceforth, L0) who plays

some naive strategy that is exogenously given (e.g., the strategy of uniformly random-

izing among actions). Types are ordered according to their level of sophistication, and
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type Lk, k ≥ 1, best responds to the belief that all other agents are of types lower than

k. In the typical level-k thinking model, L0’s decision rule pins down the model.

The naive type in our model best responds to a simplified representation of his

opponents’ behavior. This form of naive behavior is consistent with the model we

presented in the previous section. In fact, the agents whose behavior we analyzed in

the previous section correspond to type L0 in the present section. As in the previous

section, we can interpret the naive type’s behavior as best responding to coarse data

that is supplied by the SO (e.g., the ratio between the number of offers that were

accepted and the number of offers that were rejected in similar schemes in the past).

The innovation in our cognitive hierarchy model is that the naive type’s behavior

is determined in equilibrium. It is affected by the behavior of higher types and in turn

affects these higher types’ behavior. Our extension of our behavioral model is in the

spirit of Eyster and Rabin’s (2010) best response trailing naive inference (BRTNI) play.

Unlike in our model, in a BRTNI play, the naive type’s behavior is exogenous as he

best responds to his own private information while ignoring the informational content

in other players’ actions.

We now define the equilibrium concept formally. Let F be a true distribution of

types. We assume that F is known to the SO. Denote the strategy of type Lk by σLk
and let σ denote a profile of strategies played by the SO and all of the types. We keep

the definitions of analogy classes, analogy-based expectations, and consistency as in

the previous section.

Definition 5 The pair (σ, β) constitutes an equilibrium of Γ (R) if the following con-

ditions are met:

• The analogy-based expectations β are consistent with σ.

• The strategy σL0 is a best response to β.

• For every k > 0, the strategy σLk is a best response to a belief that other types

are distributed uniformly on {0, ..., k − 1} and each type Lκ plays σLκ.

The uniformity assumption in the third requirement of Definition 5 makes the expo-

sition simpler. It can be replaced with much weaker assumptions without any effect

on the following result. As in the previous section, there may exist multiple equilibria.

We denote by π (R) the highest equilibrium payoff that the SO can obtain in Γ (R).

Proposition 8 Fix q = 0 and suppose that F does not contain type L0-agents. There

exists a number δ? such that for every δ > δ?, there exists an incentive-compatible

one-level scheme R such that π (R).
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Proof. Consider a one-level scheme R that pays aR (1) ≤ φR. First, note that β (M3)

has no effect on the agents’ decisions since R is a one-level scheme. Second, observe

that R is incentive compatible. Third, it is easy to see that for any profile σ in which

some agents purchase a license, the SO’s expected profit is strictly positive. We now

construct an equilibrium in which agents purchase licenses.

Set σ such that agents of type L0 purchase a license in rounds 1, ..., s0 and do not

purchase a license in every round t > s0 + 1. Since L1 best responds to L0, if s0 is

sufficiently late and δ is sufficiently large, then for L1 it is a best response to purchase a

license in rounds 1, ..., s1 and not to do so in every round t > s1. Note that s1 depends

on s0. We can recursively construct such thresholds for each type L2, ..., Lk such that

s0 > s1 ≥ s2 ≥ s3 ≥ ... ≥ sk. It is left to show that, for large values of δ, σL0 is a best

response to the analogy-based expectations that are consistent with σ. It is sufficient

to show that it is a best response for L0 to purchase a license in round s0 and to reject

one in round s0 + 1.

In round s0, type L0 agents care only about the number of rounds left until the

end of the game and β (M1). All else equal, the greater δ and β (M1) are, the greater

is L0’s expected payoff conditional on purchasing a license in round s0. We now show

that when δ is increased, it is possible to adjust σ such that β (M1) is kept constant.

Observe that in every round t > s0, each type Lk, where k > 0, is indifferent between

making an offer or not when he meets an agent. Suppose that each agent of these types

offers a license in those rounds with probability γ. If γ = 0, then in every round t > s0

no offers are made. Thus, the expected number of rounds after s0 has no effect on

β (M1). However, an increase in δ implies an increase in L0’s potential clientele. For

instance, if the game lasts for n > s0 periods, then L0’s analogy-based expected payoff

is β (M1) (Hn −Hs0) aR (1) − φR, where Hn is the n-th harmonic number. Since the

harmonic sum diverges at the n =∞ limit, there exists a value δ? such that for every

δ > δ?, it is a best response for type L0 agents to accept offers in round s0. We still

have to show that for values of δ greater than δ? it is a best response for L0 agents to

reject an offer in round s0 + 1.

Observe that β (M1) continuously decreases in γ. By (6), for γ = 1, the analogy-

based expected number of distributors in the first level of the down-line of an L0 agent

who purchases a license in round s0 + 1 is strictly lower than 1. By construction,

aR (1) ≤ φR. Hence, for every δ > δ?, we can find a γ (δ) ∈ (0, 1) such that it is a

best response for L0 agents to purchase a license in round s0 and not to do so in round

s0 + 1.

When facing a large population of agents whose degree of sophistication is strictly
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greater than 0, the SO can sustain a pyramid scam. Moreover, he can do so using

a one-level scheme. Further, this result is independent of p and the agents’ level of

sophistication (as long as the latter level is finite). Thus, even in instances in which a

population of naive agents is not vulnerable to pyramid scams (i.e., when p is high or

when the rewards offered in the underlying scheme are conditioned on one level of the

participants’ down-lines), a large population of agents whose degree of sophistication

is strictly greater than 0 is vulnerable to such scams.

The intuition for this result is as follows. In the cognitive hierarchy setting, agents

purchase a license since they think that they will be able to sell licenses to agents

who are less sophisticated than themselves. At the bottom of this imagined hierarchy,

there are naive agents who decide whether or not to purchase a license based on δ

and β (M1). Unlike the model in the previous section, here the fact that the agents

would reject offers from round s0 + 1 onwards does not mean that β (M1) is decreasing

in δ. This results from the fact that in the cognitive hierarchy setting, when F does

not contain naive agents, offers are not made after round s0, and, therefore, do not

affect the agents’ analogy-based expectations. Thus, when δ is increased, the analogy-

based expected number of licenses that the imagined naive type sells increases and this

incentivizes agents who are more sophisticated to purchase a license in order to take

advantage of L0’s mistakes.

5 Extensions

5.1 A mechanism-design approach

Our definition of a reward scheme is with loss of generality. More generally, one could

allow a reward scheme R to be any function that maps directed weighted trees to real

rewards. The schemes we use have realistic motives and they allow us to focus on the

multilevel nature of the problem and the commissions structure. We now discuss the

changes that would result in our analysis from applying a more general approach.

It is easy to see that the possibility results (in Propositions 6–8) hold when we

take a general approach. The negative result of Proposition 1 is a direct result of the

no-trade theorems (Milgrom and Stokey, 1982; Tirole, 1982) and does not depend on

our restrictions. It is also possible to generalize the negative result of Proposition 5

in the case of p = 0, which is the least favorable case for this result. When p > 0,

our setting’s tractability is significantly reduced when we allow for a general class of

reward schemes.
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Let us consider the benchmark results of the fully rational case (Propositions 2–4).

The geometric scheme is not necessarily optimal in the general case. However, it

maximizes the SO’s expected profit among a larger class of schemes than the one we

considered: the class of schemes that offer a proportional commission per retail sale.

Definition 6 A reward scheme R is said to have a direct selling mode if there exist

two constants b > 0 and φ ≥ 0 such that whenever Ti = {i}, then R (Ti) = bwi − φ.

Under a scheme that offers a “direct selling” mode, distributors who focus solely

on retail sales and do not recruit other distributors to their down-line obtain a fixed

commission per each retail sale they make. Among the schemes that offer such a mode,

the geometric scheme R? (which neither incentivizes recruitment directly nor charges

an entry fee) maximizes the SO’s expected profit. That is, an SO who offers the

possibility of focusing on retail sales is better off not charging an entry fee or directly

compensating distributors for recruiting new distributors into their down-line.

5.2 Non-common prior beliefs about the number of entrants

We now examine the case in which different agents may hold different prior beliefs

about the number of potential entrants. We relax the assumption that the agents’

discount factors are identical as follows. For every time t ∈ N, conditional on the

game reaching time t, each agent i ∈ I holds a belief that the game continues for

another period with a probability of δi, and that time t is the last period of the game

with probability 1 − δi. Assume that the agents’ discount factors are drawn from a

distribution H with a support [δ, δ̄], where δ̄ < 1. The higher a player’s discount factor

is, the more optimistic he is about the number of future entrants.

Since our agents now have different prior beliefs, we must be careful when we

choose the solution concept as SPE and backward induction need not coincide. In an

SPE, players correctly predict subsequent players’ actions. However, when players put

themselves in their opponents’ shoes they might err when they hold prior beliefs that

are different from their opponents’ beliefs (for a comprehensive discussion of this issue

in the context of time preferences, see Sarafidis, 2006). For the sake of brevity, we

shall use SPE in order to solve the model. However, the next result holds under both

concepts.

Proposition 9 Let q = 0. There exists no incentive-compatible reward scheme R such

that in its induced game there exists an SPE in which the SO makes a strictly positive

expected profit.
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Proof. Consider an agent j who enters the game in round t. Agent j’s expected

number of descendants (in G) is smaller than
∑∞

i=1
δ̄i

t+1
. As this expression goes to 0

when t tends to infinity, j’s expected number of descendants (in G) goes to 0 as well.

Incentive compatibility implies that R (Ti) ≤ φR (|Gi| − 1). Hence, there is a round t?

from which time onwards purchasing a license cannot be a best response regardless of

an agent’s beliefs about his successors’ actions. In an SPE, agents correctly predict

that their opponents will never purchase a license after round t?. Therefore, we can

use a standard backward induction argument to show that, in an SPE, agents never

purchase a license (independently of whether they use their opponents’ discount factors

or put themselves in their opponents’ shoes and use their own discount factor).

The difference between ABEE and non-common priors

Players who hold non-common prior beliefs differ in how they evaluate the future, but

their evaluation is independent of the history. However, in an ABEE, the players’

evaluation of the future is affected by the overall behavior of their opponents and,

in particular, by the events that take place at the beginning of the game. It is this

history-dependent evaluation that enables a pyramid scam to work.

6 Related Literature

Throughout most of the analysis, we used ABEE as a solution concept. This concept

was developed in Jehiel (2005) and later extended in Jehiel and Koessler (2008). In

an ABEE, agents bundle contingencies into analogy classes and form beliefs that are

measurable with respect to these analogy classes. Other prominent models in which

agents reason in terms of a coarse representation of the correct underlying distribution

are Piccione and Rubinstein (2003), Guarino and Jehiel (2011), Eyster and Piccione

(2013), and Steiner and Stewart (2015).

A related concept, “cursed equilibrium,” was developed by Eyster and Rabin (2005)

for games of incomplete information. In a cursed equilibrium, agents fail to realize the

extent to which their opponents’ actions depend on their opponents’ private informa-

tion. In the context of social learning, Eyster and Rabin (2010) study a model in which

agents best respond to the belief that their opponents’ actions are conditioned on their

private information and do not reflect learning from these opponents’ predecessors’

behavior. This type of play can be viewed as level-1 thinking in a cognitive hierar-

chy model in which the level-0 type best responds to his private information without
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taking his opponents’ actions into account. The main conceptual difference from our

level-k thinking model is that in our model, the level-0 type’s beliefs are determined in

equilibrium.

Our paper includes a contracting interaction between a fully rational monopolist

and boundedly rational agents. Spiegler (2011) offers a textbook treatment of models

in which “rational” firms interact with boundedly rational agents. In Eliaz and Spiegler

(2006, 2008), a principal interacts with agents who differ in their ability to predict their

future tastes. In the context of auctions, Crawford et al. (2009) illustrate how agents

who are characterized by level-k thinking can be exploited by an auctioneer who uses

an “exotic” auction. Jehiel (2011) studies feedback design in auctions when bidders

bundle their opponents’ behavior (possibly in different auction formats) into analogy

classes.

Our work also relates to the literature on bubbles and speculative trade. Bianchi

and Jehiel (2010) analyze a model of speculative bubbles in which there are two types

of investors. While rational investors are aware of the subtleties of the equilibrium

patterns, partially sophisticated investors expect constant buy/sell orders that match

the actual frequencies averaged over time. Eliaz and Spiegler (2007, 2009) apply a

mechanism-design approach to speculative trade between agents who hold different

prior beliefs.

Abreu and Brunnermeier (2003) study a model in which a finite process creates a

bubble that bursts after a synchronized attack by a sufficient number of investors or

at the end of the process. The investors in their model become aware of the bubble

sequentially and face uncertainty about the time the bubble started and how many other

agents are aware of the bubble. Abreu and Brunnermeier show that the bubble may

persist long after all of the investors are aware of its existence.

As in the case of a bubble, time plays a major role in pyramid scams as, potentially,

agents who arrive early have an incentive to join the scam since they can benefit at the

expense of those who join later. However, uncertainty about arrival time cannot lead

to participation in a pyramid scam. The reason that such uncertainty is sufficient to

maintain a bubble in Abreu and Brunnermeier’s model is that, unlike a typical pyramid

scam, their trading game is not a zero-sum game. Underlying the bubble in the model

there is an exogenous process that represents behavioral traders. When the rational

investors ride the bubble in their model, they make positive profits at the expense of

those behavioral traders.

Pyramids and multilevel marketing schemes have received some attention outside

of the economic literature. Emek et al. (2011) characterize mechanisms for multilevel
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marketing and find that geometric schemes are the only schemes that satisfy child

dependence (the root’s reward is uniquely determined by the rewards of its children),

depth-level dependence (the root’s reward is uniquely determined by the number of

nodes on each level of the down-line), and additivity (which pins down the linear

structure). Gastwirth (1977) and Bhattacharya and Gastwirth (1984) use the ran-

dom recursive tree model to demonstrate the fraud underlying two real-world pyramid

schemes: only a small fraction of the participants can make profits that cover the entry

fees. In these two papers there are no strategic elements.

Relation to the centipede game

There is some resemblance between the structure of pyramid scams and the famous

centipede game. It is well known that in the unique SPE of the finite-horizon centipede

game, players always stop even though they can benefit if they all continue for a few

rounds. Jehiel (2005) resolves this paradox by showing that it is possible to sustain

an ABEE in which players continue. In fact, under the coarsest partition, in a pure-

strategy ABEE, players either always stop or always continue (except in the last round).

Let us understand the difference between pyramid scams and the centipede game

in the context of analogy-based expectations. In the centipede game, in every history

that is reached with positive probability there is at most one node in which an agent

stops. This implies that in histories that affect the agents’ analogy-based expectations,

the frequency of continue is much larger than the frequency of stop. Moreover, if any of

the players continues in an ABEE, then at least one of them believes that his opponent

always continues, and this leads to the extreme result described above. In a pyramid

scam, agents continue to reject offers long after the first rejection, and this affects

(negatively) the agents’ analogy-based expectations that their opponents will join the

scam. The negative effect makes it significantly harder for the SO to sustain a pyramid

scam. In fact, due to this effect, in some instances (e.g., when p is large), even if the

game is arbitrarily long, it is impossible to find a payoff structure that would induce

an ABEE in which agents participate in a pyramid scam.

7 Concluding Remarks

We presented a model that can be used both to study legitimate multilevel marketing

and to understand the conditions that allow pyramid scams to work. We showed that

agents who use simplified representations of their opponents’ behavior may participate
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in a pyramid scam, and examined the characteristics of reward schemes that underlie

such scams. Our results provided a rationale for why such schemes (as well as legiti-

mate multilevel marketing schemes) often compensate participants based on multiple

levels of their down-lines. We connected strategic sophistication and vulnerability to

pyramid scams, and showed that in some instances where a population of agents who

use simple theories of their opponents’ behavior is not vulnerable to pyramid scams, a

population of agents whose degree of sophistication is higher will participate in such

scams. At the methodological level, we presented a level-k thinking model in which

the naive behavior is determined in equilibrium. Finally, we contributed to the indus-

trial organization literature by characterizing the optimal multilevel-marketing scheme

when agents are fully rational.

The agents’ arrival process

The process we used throughout the paper is borrowed from the applied statistics lit-

erature, where it is referred to as the uniform random recursive tree model. We allowed

the number of rounds to be random, whereas most of the uniform random recursive

tree model’s applications assume that there is a fixed number of n rounds. All of our

results hold under the latter specification; however, we chose not to apply it in order

to make the model more realistic. In fact, relaxing the randomness assumption would

allow us to prove additional, stronger results. In Appendix B, we assume that it is

commonly known that the game lasts for n rounds. This simplification allows us to

provide a flavor of of the size of an optimal pyramid scam when q = 0.

Legal restrictions

In some countries, using recruitment-based compensation and charging entry fees are

criminal offenses (see, e.g., Competition Bureau, 2015). Let us incorporate these re-

strictions into our model and study the possibility of sustaining a pyramid scam when

φR = 0 and aR (τ) = 0 for every τ ∈ N. Instead of an entry fee, assume that the SO

is able to force each agent who wants to become a distributor to purchase initial stock

of x units of the good at a price of ηR per unit. Consider the q = 0 case. There is a

one-to-one mapping between this specification and the model we presented in the pre-

vious sections with φR = xηR and aR (τ) = xbR (τ) for every τ ∈ N. Thus, preventing

the SO from charging explicit fees and from paying recruitment-based compensation

would not affect his ability to sustain a pyramid scam.
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8 Appendix A

A proof that the derivative of (13) with respect to p is negative

Observe that the derivative of (12) is

v′ (p) := v′ = l2 + 2pl3 + 3p2l4 + ... (14)

Let us derive the x-th component of (13), given by lx(1+pv)x−1

(1+v)x
, with respect to p to
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obtain

lx

(1 + v)2x [(1 + v)x (x− 1) (1 + pv)x−2 (v + v′p)] (15)

− lx

(1 + v)2x [x (1 + v)x−1 (1 + pv)x−1 v′]

Observe that

v + v′p = l1 + 2pl2 + 3p2l3 + 4p3l4 + ... (16)

and that for x = 1, lx
(1+v)2x

[(1 + v)x (x− 1) (1 + pv)x−2 (v + v′p)] = 0. Hence, we can

reduce the lower part of (15) for the x-th component of (13) from the upper part of (15)

for the (x+ 1)-th component of (13) and sum over all x ≥ 1 to obtain the derivative

of (13) with respect to p:

∞∑
x=1

x (1 + pv)x−1

(1 + v)x+1 [lx+1 (v + v′p)− lxv′]

This derivative equals the sum of the elements of the following infinite square ma-

trix: 

(l2l1 − l1l2) γ11 (l2l2 − l1l3) γ12 (l2l3 − l1l4) γ13 (l2l4 − l1l5) γ14 . . .
...

(l3l1 − l2l2) γ21 (l3l2 − l2l3) γ22 (l3l3 − l2l4) γ23 (l3l4 − l2l5) γ24 . . .
...

(l4l1 − l3l2) γ31 (l4l2 − l3l3) γ32 0 ∗ γ33 (l4l4 − l3l5) γ34 . . .
...

(l5l1 − l4l2) γ41 (l5l2 − l4l3) γ42 (l5l3 − l4l4) γ43 0 ∗ γ34 . . .
...

...
...

...
...

. . .
...


where

γxy =
xypy−1 (1− pv)x−1

(1 + v)x+1

Observe that γxy > γyx if and only if x > y. Hence, the sum of the matrix’s cells is

strictly negative if

l2
l1
>
l3
l2
>
l4
l3
> ... (17)

We now prove (17). With a slight abuse of notation, let k denote an agent who enters
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the game in round k. Denote by lj,t the expected number of agents in the j-th level of

Gk in the case where the game ends at the end of round t > k. Suppose that l1,t > 0

such that l2,t
l1,t

is well defined. An increase in t raises l2,t
l1,t

since l1,t − l1,t−1 = 1
t

and

l2,t − l2,t−1 = 1
t

(
1

k+1
+ ...+ 1

t−1

)
. Since

lj+1,t

lj,t
=
lj+1,t−1 + 1

t
lj,t−1

lj,t−1 + 1
t
lj−1,t−1

(18)

it follows that the LHS of (18) is increasing in t whenever it is well defined. Observe

that (18) also implies that

lj+1,t

lj,t
≤ max

{
lj+1,t−1

lj,t−1

,
lj,t−1

lj−1,t−1

}
(19)

By the previous arguments,

lj+1,t−1

lj,t−1

<
lj+1,t

lj,t
≤ lj,t−1

lj−1,t−1

<
lj,t
lj−1,t

(20)

which concludes the proof.

9 Appendix B: Fixed Number of Rounds

Let us simplify our model by relaxing the uncertainty regarding the number of future

entrants and focusing on the p = 0 case, which is the most favorable one for sustaining a

pyramid scam according to Proposition 6. Formally, instead of having a fixed discount

factor δ, we assume that it is commonly known that the game lasts for n rounds.

This simplification allows us to illustrate the profit-maximizing scheme. It should be

mentioned that our previous results hold under minor modifications. For instance,

in Proposition 6, we need to change the statement “for every δ > δ?” to “for every

n ≥ 32.”

We now solve for the incentive-compatible reward scheme R that maximizes the

SO’s expected profit (as before, we consider the ABEE that guarantees the SO the

highest profit among all of the ABEEs in the scheme’s induced game) when q = 0 and

n = 100.

Our agents are risk neutral and, in an ABEE, they hold beliefs that are different

from those of the SO. This resembles the case of a bet between risk-neutral agents who

hold different prior beliefs. In such a case, it is well known that these agents always

prefer to increase the size of the bet. Therefore, to discuss profit maximization we must
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bound the size of the bet. We shall assume that each agent has a budget B > 0 that

he cannot exceed (i.e., φR ≤ B) and that this budget is large compared to c (otherwise

it would be impossible to make these agents take part in a pyramid). To economize on

notation, we set B = 1 and fix c = 0. The risk neutrality of the agents along with their

budget pin down the entry fee as it must be equal to 1 at the optimum (otherwise it

would be possible to raise the SO’s profit by scaling up all of the commissions and the

entry fees).

The profit-maximizing incentive-compatible reward scheme R is a collection of com-

missions per level aR (1) , ..., aR (n) such that 1 ≥ aR (τ) for every level τ . In the ABEE

of Γ (R) in which the SO’s profit is maximized, there is a last round k < n in which

an agent is willing to purchase a license. Denote this round by kR and denote by

Lht the expected number of distributors in the h-th level of the t-th entrant’s down-

line according to his analogy-based expectations. Since R maximizes the SO’s profit,∑n
h=1 L

h
kR
aR (h) = 1. That is, the last agent to purchase a license is indifferent between

purchasing a license and not doing so (otherwise it would be possible to scale down the

commissions and increase the SO’s expected profit).

Let us examine the SO’s strategy. If, given a scheme and a profile of strategies,

it is a best response for the SO to make an offer in round t < kR, it is also a best

response for the SO to make an offer in round t + 1 since the expected commissions

paid to a distributor weakly decrease with his time of entry. Hence, when we compare

different schemes, we can focus on ABEEs in which the SO makes offers in a subset of

consecutive rounds.

The next step is to show that, without loss of generality, we can restrict attention

to profiles in which the SO makes offers only in the first kR rounds. Consider an

ABEE in which the SO makes offers in rounds t, ..., kR, where t > 1. The number of

distributors in T is a random variable that can take values in {0, ..., kR − t+ 1}. Let

t? be a value that maximizes the SO’s expected profit given the scheme R. Consider

a profile of strategies σ in which agents purchase licenses in rounds 1, ..., t? and the

SO makes offers in these rounds (in σ, agents reject offers made in rounds t′ > t?).

The SO’s expected net profit increases due to this transition, but the new profile may

not be an ABEE. It is possible to calculate Lhk and Lht? for every h ∈ {1, ..., n} and

show that Lhk ≤ Lht? . This implies that the SO can fix the entry fees, scale down the

commissions at each level, and make the new profile an ABEE. Hence, in the context

of profit maximization, we can restrict our attention to ABEEs in which the SO makes

offers in the first kR rounds.

It is left to set the different commissions such that the SO’s actual payments minus
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the fees he can charge are minimized. We need to solve this problem for every potential

kR ≤ n and maximize over these kR’s. Denote the j-th entrant to T by ij. The solution

requires us to compare, for every τ ∈ {1, ..., n}, the payments that the SO can extract

from the agents based on a (τ), that is, kRL
τ
kR
a (τ), with the payments that he actually

has to pay based on a (τ), that is,
∑kR

j=1 Pr[dG (SO, ij) ≥ τ + 1]a (τ). The latter

expression can be calculated due to a result in Mahmoud (1991): for ij ≥ x+ 1,

Pr[dG (SO, ij) = x] =
1

(ij − 1)!

[
ij − 1

x

]
(21)

where
[
ij−1
x

]
is the signless Stirling number of the first kind (the number of permutations

of ij elements with x disjoint cycles). We can write LτkR explicitly as

∑n−(τ−1)
i1=kR+1

∑n−(τ−2)
i2=i1+1 ...

∑n
iτ=iτ−1+1

1
i1i2...iτ(

1 +
∑n

j=kR+1
1
j

)τ (22)

We can now calculate the profit-maximizing scheme given a fixed kR (we must make

this calculation for every kR ≤ n). The incentive-compatible scheme that maximizes

the SO’s profit must assign weights to the different a’s such that:

• For every τ ∈ {1, ..., n}, aR (τ) ≤ 1.

•
∑n

τ=1 L
τ
kR
aR (τ) = 1.

• The size of the different aR (τ)’s is decided according to the following cost-benefit

ratio: ∑kR
i=1 Pr[dG (SO, i) ≥ τ + 1]

kRLτkR
(23)

We start with the a (τ)’s for which the ratio is the lowest and increase them until one

of the following occurs: either a (τ) = 1 or
∑n

τ=1 L
τ
kR
aR (τ) = 1. We continue this

procedure until
∑n

τ=1 L
τ
kR
aR (τ) = 1.

The scheme and the ABEE that maximize the SO’s profit are such that 3 agents

purchase a license (kR = 3), aR (1) = 0.814, aR (2) = ... = 1, and the SO’s profit is

1.884. With only two layers of compensation, the scheme and ABEE that maximize the

SO’s expected profit have kR = 3, aR (1) = 0.922, aR (2) = 1, and the SO’s maximal
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profit is 1.758.
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